
HEP-CCE

HDF5 as intermediate
storage for HPC processing

Saba Sehrish for the CCE IOS team

HEP CCE All-hands Meeting Meeting October 2022

HEP-CCE
Goal

Evaluate if moving intermediate data (i.e. data between
different processing steps) of an HEP workflow to a parallel
file format (such as HDF5) could be beneficial for HEP data
processing on HPC?

HEP-CCE
Current status

Major Activities Status

Multithreaded Test framework development Complete

Serial output and input modules development
and evaluation

Complete

MPI extension and Parallel HDF5 output
modules development and evaluation

In progress

In the last all hands meeting in April, we discussed multithreaded
test Framework, comparisons of different output modes, and
shared initial design approach towards parallel design.

HEP-CCERecap: Adding MPI support to the Root
serialization test framework for Parallel HDF5
design

• Created an MPI-based version of the testing framework
• Goal is to be able to evaluate multi-node performance and

developing parallel HDF5 output modules
• Current supported modes:

a. N MPI ranks able to read N input files and write N output files,
trivial, running multiple processes of root serialization all through
MPI (any input/output mode combination is supported)

b. N MPI ranks reading 1 input file and write N output files (any
input/output mode combination should work logically)

c. N MPI ranks reading N files and writing 1 output file (only
supported for HDF5)

HEP-CCE
Parallel HDF5 approach
• N number of MPI ranks participate in the reading of file(s)

and write to a single HDF5 file collectively (i.e. parallel write
across a single dataset).
• Writing a file collectively has the advantage that the final file

might not need merging.
• The Event batch based serial HDF5 output module design

seemed to be the best performing HDF5 design, hence we
used that design as the basis of parallel HDF5 design.

• Store events as blobs in a single HDF5 dataset, and aggregate
events before writing

• The key feature in the parallel design is event distribution
approach among MPI ranks and the use of MPI functions to
exchange relevant information such as data sizes and
offsets to coordinate for collective IO.

HEP-CCE
Approach 1: Number of events is known
Each MPI rank knows the total number of events to process and the
batch size (i.e. how many to aggregate).

• Equally distribute events among MPI ranks
• If not equally divisible, or every rank does not have same number of

batches, adjust number of events to do so
• Each rank then calculates the starting event and number of

events it will be processing
• Each rank only reads the events it will write, except in the case where

its not equally divisible, then it reads more but writes only that is
requested

• Each rank reads the events and continue to accumulate until
reaches batch size, then it is ready to write

• Using MPI_Scan and MPI_Reduce, exchange information with
other ranks to determine the offset it will be writing to

• Each rank extends the dataset accordingly and makes the
H5Dwrite call

HEP-CCE

9 10 11 12 13 14 15 16

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Read/Input

Write happens in
batches of size 2

First parallel write

1 3 4 5 6 7 82

1 2 5 6 10 13 149

HEP-CCE

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Read/Input

3 4 7 8 11 12 15 16

Write happens in batches

First parallel
write

Second parallel write

1 3 4 5 6 7 82 9 10 11 12 13 14 15 16

1 2 5 6 10 13 149

HEP-CCE
Approach 2: Number of events is unknown

• A realistic use case, where at the beginning of the
processing, number of events is unknown; processing
continues until end of file or no more events to process

• Each rank knows the number of events it can write at a time
• For every batch write, each rank reads in the number of

events that is equal to the batch size across all ranks.
• No adjustments needed in reading but we do read more

data per batch write.

HEP-CCE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Each rank reads same 8 events

1 2 3 4 5 6 7 8

Write happens in
batches of size 2

First parallel write

HEP-CCE

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Batch 1 read by all ranks

9 10 11 12 13 14 15 16

Write happens in
batches of size 2

First
parallel
write

Second parallel write

Batch 2 read by all ranks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

HEP-CCE
Sample HDF5 output file
HDF5 "sample.h5" {
GROUP "/" {
 GROUP "Lumi" {
 ATTRIBUTE "BranchListIndexes" {
 DATATYPE H5T_STRING {
 STRSIZE H5T_VARIABLE;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_UTF8;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 }

 ……

 ATTRIBUTE "run" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SCALAR
 }
 ATTRIBUTE "uint_bunchSpacingProducer__RECO." {
 DATATYPE H5T_STRING {
 STRSIZE H5T_VARIABLE;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_UTF8;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 }
 DATASET "EventIDs" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (320000) / (H5S_UNLIMITED) }
 }
 DATASET "Offsets" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (35840000) / (H5S_UNLIMITED) }
 }
 DATASET "Products" {
 DATATYPE H5T_STD_I8LE
 DATASPACE SIMPLE { (23943467427) / (H5S_UNLIMITED) }
 }
 }
}
}

Three data sets; one for event IDs, one
for storing offsets, and the last one for the
products data itself

Data product information stored as attributes

Run number, etc also stored as attributes

HEP-CCE
Performance studies on Cori

• Used the root serialization test framework in MPI mode;
kept HDF5 chunk size, batch size constant

• Used Cori haswell nodes with burst buffers
• Scaling tests done by increasing the number of nodes
• MPI ranks varied from 1- 4 per node
• The number of threads per node kept at 64
• Increased number of events with number of nodes.

• Number of events 320K to 20 million
• Generated output file size ranges: 25GB - 1.6 TB
• Used CMS data file
• Burst buffer stripped up to 2 TB space requested (100 burst

buffer nodes)

HEP-CCE
Total throughput (Events/sec)

• Total throughput calculated
using event processing time and
number of events

• Performance scaling with the
number of nodes

• Using 4 ranks per node (16
threads/rank) gave the best
performance, ~51%
improvement as compared with
1 rank per node.

• ~97K events/sec is the
maximum throughput observed
for 256 ranks on 64 nodes.

• This translates to 8GB/s
bandwidth we were able to
consume for the largest set.

HEP-CCE
IO time breakdown

• Time spent in MPI Scan calls to coordinate offsets in the
datasets is ~9% of the total IO time

• Time spent in MPI Reduce calls for the final offset is ~5% of
the total IO time

• Time spent in actual HDF5 write dataset calls is ~32%
• There are other calls that we did not time, for example

creating/opening HDF5 file, writing file header that includes
writing hundreds of attributes (115 for the data used in
tests), inquire about current data space, extend/resize
datasets, etc

HEP-CCE
Next steps and plan for FY23
• Complete performance evaluation studies on Cori

• Understand IO behavior, untimed calls that are actually constituting
50% of the IO time, use Darshan logs

• Move evaluation studies to Perlmutter soon
• HDF5 options to work with

• Asynchronous IO
• Multi dataset; we only have 3 datasets though

• Write a paper/report

HEP-CCE

Backup material

HEP-CCE
Throughput for all three cases

HEP-CCE
Future work

• Storing C++ objects (using ROOT’s reflection) directly to HDF5 without
serialization

• Multi-threaded HDF5
• Any use of Subfiling for our work?
• HDF5 streaming services
• Explore direct storage access from GPUs
• Others not directly HDF5

• RNtuple
• C++ object design studies

